GCE

Mathematics

Advanced GCE

Unit 4734: Probability and Statistics 3

Mark Scheme for June 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2011
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

1 (i)	$\begin{aligned} & \mathrm{E}(S)=22 \\ & \operatorname{Var}(S)=\mathrm{E}(S) \end{aligned}$	$\begin{array}{ll} \hline \text { B1 } & \\ \text { B1 } & 2 \end{array}$	
(ii)	$\begin{aligned} \mathrm{E}(T) & =1 / 1 \times 5-1 / 4 \times 4=1.5 \\ \operatorname{Var}(T) & =1 / 4 \times 5+1 / 1 \times 4 \\ & =1.5=\mathrm{E}(T) \mathrm{AG} \end{aligned}$	$\begin{array}{ll} \text { B1 } & \\ \text { M1 } & \\ \text { A1 } & 3 \end{array}$	Using $\operatorname{Var}(a X+b Y)$ CWO
(iii)	T only does not have a Poisson distribution Some values of T are EITHER negative OR: fractional	$\begin{array}{lr} \text { B1 } & \\ & \\ & \text { B1 } \\ & 2 \\ & (7) \\ \hline \end{array}$	Unless wrong reason
2(i)	$\begin{aligned} & \text { Use }(6 / 80)(74 / 80) / 80 \\ & p_{\text {s }} \pm z s \\ & z=1.96 \\ & (0.0173,0.1327) \end{aligned}$	$\begin{array}{ll}\text { B1 } & \\ \text { M1 } & \\ \text { B1 } & \\ \text { A1 } & 4\end{array}$	Or /79 s of the form $\sqrt{ }\left(p_{s} q_{s} / 80\right)$ (or 79) or no $\sqrt{ }$ Accept (0.017,0.133)
(ii)	$\begin{aligned} & \text { Use } \mathrm{z} \sqrt{ }\left(p_{s} q_{s} / n\right) \\ & \leq 0.05 \\ & n \geq 106.6 \text {, least is } 107 \end{aligned}$	M1 A1 A1 3	$\begin{aligned} & \text { or no } V \\ & \text { and } \mathrm{z}=1.96 \text {.Or }= \end{aligned}$ Allow 110
(iii)	e.g Variance is an estimate OR Distribution of p_{s} is only approx normal	$\begin{array}{\|lr} \hline \text { B1 } & \mathbf{1} \\ & (\mathbf{8}) \\ \hline \end{array}$	Not var unknown Must state distribution of what.
3(i)	$\begin{aligned} & \int_{0}^{1} a x d x+\int_{1}^{2} a(x-2)^{2} \mathrm{dx}=1 \\ & {\left[\frac{a x^{2}}{2}\right]_{0}^{1}+\left[\frac{a(x-2)^{3}}{3}\right]_{1}^{2}} \\ & 1 / 2 a+1 / 3 a=1 \\ & \quad a=6 / 5 \end{aligned}$	$\begin{array}{ll} \text { M1 } & \\ \text { B1 } & \\ & \\ \text { M1 } & \\ \text { A1 } & 4 \end{array}$	With or without limits Correct method for equation with fractions/decimals
(ii)	$\begin{aligned} & \text { EITHER: } \int_{0}^{1} a x \mathrm{~d} x+\int_{1}^{1.5} a(x-2)^{2} \mathrm{~d} x \\ & \text { OR } 1-\int_{1.5}^{2} a(x-2)^{2} \mathrm{~d} x \\ & ={ }^{19} / 20 \end{aligned}$	M1 A1 2	Any a AEF
(iii)	$\begin{aligned} & \int_{0}^{1} a x^{2} \mathrm{dx}+\int_{1}^{2} a x(x-2)^{2} \mathrm{dx} \\ & =\left[\frac{a x^{3}}{3}\right]_{0}^{1}+\left[a\left(\frac{x^{4}}{4}-\frac{4 x^{3}}{3}+2 x^{2}\right]_{1}^{2}\right. \end{aligned}$	M1 B1	AEF With or without limits
	=9/10 (Expected monthly demand $=900$)	$\begin{array}{lr} \text { A1 } & 3 \\ & (9) \end{array}$	AEF

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

